Analysis of Some Singular Solutions in Fluid Dynamics

نویسنده

  • Zhouping Xin
چکیده

Studies on singular flows in which either the velocity fields or the vorticity fields change dramatically on small regions are of considerable interests in both the mathematical theory and applications. Important examples of such flows include supersonic shock waves, boundary layers, and motions of vortex sheets, whose studies pose many outstanding challenges in both theoretical and numerical analysis. The aim of this talk is to discuss some of the key issues in studying such flows and to present some recent progress. First we deal with a supersonic flow past a perturbed cone, and prove the global existence of a shock wave for the stationary supersonic gas flow past an infinite curved and symmetric cone. For a general perturbed cone, a local existence theory for both steady and unsteady is also established. We then present a result on global existence and uniqueness of weak solutions to the 2-D Prandtl’s system for unsteady boundary layers. Finally, we will discuss some new results on the analysis of the vortex sheets motions which include the existence of 2-D vortex sheets with reflection symmetry; and no energy concentration for steady 3-D axisymmetric vortex sheets. 2000 Mathematics Subject Classification: 35L70, 35L65, 76N15.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Chlorine Gas Incident Simulation and Dispersion Within a Complex and Populated Urban Area Via Computation Fluid Dynamics

In some instances, it is inevitable that large amounts of potentially hazardous chemicals like chlorine gas are stored and used in facilities in densely populated areas. In such cases, all safety issues must be carefully considered. To reach this goal, it is important to have accurate information concerning chlorine gas behaviors and how it is dispersed in dense urban areas. Furthermore, mainta...

متن کامل

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

Singular solutions, momentum maps and computational anatomy

This paper describes the variational formulation of template matching problems of computational anatomy (CA); introduces the EPDiff evolution equation in the context of an analogy between CA and fluid dynamics; discusses the singular solutions for the EPDiff equation and explains why these singular solutions exist (singular momentum map). Then it draws the consequences of EPDiff for outline mat...

متن کامل

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Three Dimensional Computational Fluid Dynamics Analysis of a Proton Exchange Membrane Fuel Cell

A full three-dimensional, single phase computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both the gas distribution flow channels and the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region are developed and numer...

متن کامل

Transient Electro-osmotic Slip Flow of an Oldroyd-B Fluid with Time-fractional Caputo-Fabrizio Derivative

In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary condition is considered. The corresponding fractional system is represented by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are acquired by means of Laplace and finite Hankel transforms. Additionally...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003